
API access control
Michael Boeynaems - Johan Peeters

http://localhost:3000
https://ride-sharing.ml

https://github.com/softwarewolves/riders.git
https://github.com/JohanPeeters/riders.git

API
GatewayReact Client AWS

Lambda

{https://github.com/JohanPeeters/rides-api

https://3o7a5pnqt7.execute-api.eu-west-1.amazonaws.com/prod/rides
2

● Independent cyber security
consultant

● Lecturer at AP
● Security architect @ Colruyt

Group

https://www.portasecura.com

michael.boeynaems@portasecura.com

https://www.linkedin.com/in/michaelboeynaems

About Michael

https://www.portasecura.com
mailto:michael.boeynaems@portasecura.com
https://www.linkedin.com/in/michaelboeynaems

About Johan

● Security architect
● Founder of secappdev.org
● Consultancy and training
● Bespoke development
● Lecturer at EhB

https://www.johanpeeters.com
● @YoPeeters

yo@johanpeeters.com 4

https://www.johanpeeters.com
https://twitter.com/YoPeeters
mailto:yo@johanpeeters.com

API keys
● issued to the app developer
● great to stop Exhaustion of Funds (EoF) attacks

○ throttle limits
○ quota

● great for analytics
● OK for pay-per-use APIs if stakes are low
● pretty useless for access control

○ key shared across many instances of the client
○ key is available on a public client
○ revocation is problematic

5

CORS
● relaxes the Same Origin Policy to allow cross-origin calls
● Access-Control-Allow-* response headers
● frequent source of developer bewilderment

○ using the same origin for client and API (i.e. a first party app) solves this
○ but, if you can do this, most of this talk is irrelevant - see below

● access control based on origin of client
○ origin can easily be faked outside the browser
○ protects the client, not the API

● CORS leaves the API largely unprotected
○ white-listing origin, methods and headers affords some small measure of protection
○ just bouncing back Access-Control-Allow-Origin * wastes that opportunity
○ reflecting the origin turns out to be worse than useless (https://ejj.io/misconfigured-cors)

6

Why not use cookies?
● recommended for first-party apps

○ draft IETF BCP ‘OAuth 2.0 for Browser-based Apps’
○ https://datatracker.ietf.org/doc/draft-ietf-oauth-browser-based-apps/
○ fewer moving parts, smaller attack surface
○ caveat: setting the cookie is not trivial

● proposal for BFF to interact with authorization server
○ https://t.co/71pc4EFHDd
○ the reverse proxy handles the OAuth/OIDC flows

■ confidential client
■ tokens are harder to steal because on the back-end

○ however, more moving parts, more complex to deploy

7

https://datatracker.ietf.org/doc/draft-ietf-oauth-browser-based-apps/
https://t.co/71pc4EFHDd

First party app

API
GatewayReact Client AWS

Lambda

call with cookie

8

Third party apps

API
Gateway

React Client

AWS
Lambda

call with JWT

9

more clients

API
Gateway

Backend-for-Frontend (BFF)

call with access token
React Client

AWS
Lambda

BFF
call with cookie

10

request with
access token

11Client Lambda functionPolicy evaluationAPI Gateway

Lambda authorizer

context and
access token

principal and
policy

(E) Access Token

From RFC 6749 ©IETF 12

Abstract OAuth Protocol Flow

(A) Authorization Request

(B) Authorization Grant

(C) Authorization Grant

(D) Access Token

(F) Protected Resource

(E) Access Token

13

Concrete components

React app Cognito
User
Pool

(A) Authorization Request

(B) Authorization Grant

(C) Authorization Grant

(D) Access Token

(F) Protected Resource

API
Gateway

AWS
Lambda

oidc-
client

Client Credentials Grant

Resource Owner Password
Credentials Grant

Implicit Flow

Implicit Grant

OIDC flows

Authorization Code Flow

Hybrid Flow

Authorization Code Grant

OAuth 2.0 grants 14

Historic OAuth authorization grants/OIDC flows

6. access &
identity token

Authorization Code Flow

AuthZ
Server

1. ?redirect URL

7. call with access token

trust

3. 302 ?code

4. ?code

Client

Browser

/rides/123 15

2. authN and consent dialog

5. code

6. access &
identity token

Authorization Code Flow with PKCE

AuthZ
Server

1. ?redirect URL
&code challenge

7. call with access token

trust

3. 302 ?code

4. ?code

Client

Browser

/rides/123 16

2. authN and consent dialog

5. code &code
verifier

When to use which flow?

17

Client type Flow Refresh token
allowed?

Unattended authentication Client Credentials No

Single Page Application Authorization Code with PKCE No

Backend web application Authorization Code with PKCE Yes

Native application Authorization Code with PKCE via
external user-agent

Yes

References
● OAuth 2.0 for native apps: https://datatracker.ietf.org/doc/rfc8252/
● OAuth 2.0 for browser-based apps best current practice:

https://datatracker.ietf.org/doc/draft-ietf-oauth-browser-based-apps/
● OAuth 2.0 security best current practice:

https://datatracker.ietf.org/doc/draft-ietf-oauth-security-topics/

https://datatracker.ietf.org/doc/rfc8252/
https://datatracker.ietf.org/doc/draft-ietf-oauth-browser-based-apps/
https://datatracker.ietf.org/doc/draft-ietf-oauth-security-topics/

