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API keys
● issued to the app developer
● great to stop Exhaustion of Funds (EoF) attacks

○ throttle limits
○ quota

● great for analytics
● OK for pay-per-use APIs if stakes are low
● pretty useless for access control

○ key shared across many instances of the client
○ key is available on a public client
○ revocation is problematic
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CORS
● relaxes the Same Origin Policy to allow cross-origin calls
● Access-Control-Allow-* response headers
● frequent source of developer bewilderment

○ using the same origin for client and API (i.e. a first party app) solves this
○ but, if you can do this, most of this talk is irrelevant - see below

● access control based on origin of client
○ origin can easily be faked outside the browser
○ protects the client, not the API

● CORS leaves the API largely unprotected
○ white-listing origin, methods and headers affords some small measure of protection
○ just bouncing back Access-Control-Allow-Origin *  wastes that opportunity
○ reflecting the origin turns out to be worse than useless (https://ejj.io/misconfigured-cors)
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Why not use cookies?
● recommended for first-party apps

○ draft IETF BCP ‘OAuth 2.0 for Browser-based Apps’
○ https://datatracker.ietf.org/doc/draft-ietf-oauth-browser-based-apps/
○ fewer moving parts, smaller attack surface
○ caveat: setting the cookie is not trivial

● proposal for BFF to interact with authorization server
○ https://t.co/71pc4EFHDd
○ the reverse proxy handles the OAuth/OIDC flows

■ confidential client
■ tokens are harder to steal because on the back-end

○ however, more moving parts, more complex to deploy
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(E) Access Token

From RFC 6749 ©IETF 12

Abstract OAuth Protocol Flow

(A) Authorization Request

(B) Authorization Grant

(C) Authorization Grant

(D) Access Token

(F) Protected Resource



(E) Access Token
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Concrete components
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Client Credentials Grant

Resource Owner Password 
Credentials Grant

Implicit Flow

Implicit Grant

OIDC flows

Authorization Code Flow

Hybrid Flow

Authorization Code Grant
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Historic OAuth authorization grants/OIDC flows



6. access & 
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Authorization Code Flow

AuthZ 
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1. ?redirect URL

7. call with access token
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3. 302 ?code

4. ?code

Client
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2. authN and consent dialog

5. code



6. access & 
identity token

Authorization Code Flow with PKCE
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1. ?redirect URL
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When to use which flow?
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Client type Flow Refresh token 
allowed?

Unattended authentication Client Credentials No

Single Page Application Authorization Code with PKCE No

Backend web application Authorization Code with PKCE Yes

Native application Authorization Code with PKCE via 
external user-agent

Yes
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